Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -adipato- $\kappa^4 O^1$: O^6 -bis{aqua[5,6-diphenyl-3-(pyridin-2-yl)-1,2,4-triazine- $\kappa^2 N^2, N^3$]copper(II)}

Wei Xu* and Jin-Li Qi

Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China Correspondence e-mail: xuwei@nbu.edu.cn

Received 16 May 2012; accepted 5 June 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.057; *wR* factor = 0.135; data-to-parameter ratio = 15.9.

In the centrosymmetric binuclear title complex, $[Cu_2(C_6H_8O_4)_2(C_{20}H_{14}N_4)_2(H_2O)_2]$ $[Cu_2(PDPT)_2$ or $(C_6H_8O_4)_2(H_2O)_2$] (PDPT = 3-(2-pyridyl)-5,6-diphenyl-1,2,4triazine, the Cu atom displays a distorted square-pyramidal coordination environment with the basal plane occupied by two PDPT N atoms and two O atoms from different adipate dianions while a water molecule is located at the apical position. Of the two water H atoms, one participates in an intramolecular hydrogen bond whereas the second participates in an intermolecular hydrogen bond, which leads to the formation of a chain along [010].

Related literature

For the biological activity and applications of triazines, see: Garcia *et al.* (1995); Mashaly *et al.* (1999); Croot & Hunter (2000); Soudi *et al.* (2005); Kawamichi *et al.* (2009).

Experimental

Crystal data [Cu₂(C₆H₈O₄)₂(C₂₀H₁₄N₄)₂(H₂O)₂]

 $M_r = 1072.08$

Triclinic, $P\overline{1}$	
a = 9.4825 (19) Å	
b = 10.616 (2) Å	
c = 13.080 (3) Å	
$\alpha = 78.96 \ (3)^{\circ}$	
$\beta = 68.76 (3)^{\circ}$	
$\gamma = 76.85 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID CCD diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.756, T_{max} = 0.863$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.135$ S = 1.025295 reflections 333 parameters 3 restraints 11646 measured reflections 5295 independent reflections 3207 reflections with $I > 2\sigma(I)$ $R_{int} = 0.061$

V = 1186.4 (5) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.19 \times 0.11 \text{ mm}$

 $\mu = 0.97 \text{ mm}^-$ T = 295 K

7 - 1

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O5-H5A\cdots O3^{i}$	0.83	1.92	2.721 (3)	161
$O5-H5B\cdots O1^{ii}$	0.83	2.06	2.878 (4)	167

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y + 1, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2363).

References

- Croot, P. L. & Hunter, K. A. (2000). Anal. Chim. Acta, 406, 289-302.
- Garcia, G., Solano, I., Sanchez, G. & Lopez, G. (1995). *Polyhedron*, **14**, 1855–1863.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. (2009). *Nature (London)*, **461**, 633–635.
- Mashaly, M., Bayoumi, H. A. & Taha, A. (1999). J. Serb. Chem. Soc. 64, 621– 635.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soudi, A. A., Marandi, F., Morsali, A., Kempe, R. & Hertle, I. (2005). J. Coord. Chem. 58, 1631–1637.

supplementary materials

Acta Cryst. (2012). E68, m906 [doi:10.1107/S1600536812025676]

Di- μ -adipato- $\kappa^4 O^1$:O⁶-bis{aqua[5,6-diphenyl-3-(pyridin-2-yl)-1,2,4-triazine- $\kappa^2 N^2$, N^3]copper(II)}

Wei Xu and Jin-Li Qi

Comment

Research on coordination chemistry of triazine–derived ligands has progressed very rapidly during the past two decades (Kawamichi *et al.*, 2009). The 1,2,4–triazine compounds are well–known in natural materials and show intersting biological, pharmacological and medicinal properties (Garcia *et al.*, 1995). The 3–(2–pyridyl)–5,6–diphenyl–1,2,4–triazine (*PDPT*) represents a principal class of *N*–donor heterocyclic ligands that exhibit interesting pharmacological properties such as blood platelet aggregation inhibition, significant activity towards leukemia and ovarian cancer, and anti–HIV activity (Mashaly *et al.*, 1999; Soudi *et al.*, 2005). It also has been widely used as an sensitive reagent for the determination of Fe(II) by spectrophotometric methods, in natural and waste water (Croot & Hunter, 2000). The title complex, was recently prepared and its crystal structure is reported here.

The title compound crystal structure is composed of centrosymmetric binuclear $[Cu_2(H_2O)_2(PDPT)_2(C_6H_8O_4)_2]$ complex molecule (Fig. 1). The dinuclear complex molecules are centered at the crystallographic 2*e* positions. Each Cu atom is coordinated by two N atoms of the chelating *PDPT* ligand and three O atoms of one H₂O molecule and two bismonodentate adipato ligands to form a slightly distorted square–pyramidal coordination with H₂O molecule located at the apical position (d(Cu–N) = 2.028 (3)Å, 2.029 (3)Å, the basal d(Cu–O) = 1.921 (3)Å, 1.961 (3)Å, the axial d(Cu–O) = 2.375 (3)Å). Through the adipato ligands, the square–pyramidally coordinated Cu atoms are linked to form centrosymmetric dinuclear. As expected, the Cu atom is slightly shifted toward the apical water O atom by 0.026 (2)Å from the least–squares plane defined by the four equatorial coordinating atoms. The triazine ring adopts a slight twist conformation. The dihedral angle between the two phenyl rings is 61.9 (2)°.

As shown in the Fig. 2 and Table 1, within the crystal structure, the water molecule O5 forms a strong intramolecular hydrogen bond to the uncoordinated carboxyl O3ⁱ with O5…O3ⁱ = 2.721 (3)Å and angle O5—H5A…O3ⁱ = 161°. Moreover, it forms an intermolecular hydrogen bond to the coordinated carboxyl O1ⁱⁱ atoms with O5…O1ⁱⁱ = 2.878 (4)Å and angle O5—H5B…O1ⁱⁱ = 167° to connect the dinuclear complexes along the [0 1 0] direction. Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1.

Experimental

Addition of 2.0 mL (1.0 *M*) NaOH to a stirred aqueous of 0.172 g (1.0 mmol) $CuCl_2 2H_2O$ in 5.0 mL H_2O yield a blue precipitate, which was then separated by centrifugation, followed by washing with double–distilled water until no detectable Cl⁻ anions in supernatant. The precipitate was added to a stirred ethanolic aqueous solution of 0.146 g (1.0 mmol) adipic acid in 20 mL *EtOH*/ H_2O (v:v = 1: 1). To the resulting suspension was added 0.310 g (1.0 mmol) 3–(2– pyridyl)–5,6–diphenyl–1,2,4–triazine (*PDPT*). The mixture was further stirred for approximately 15 min and the insoluble solid was filtered off. The filtrate (pH = 6.5) was allowed to stand at room temperature. Slow evaporation for two weeks afforded a small amount of brown crystals (yield 58% based on the initial CuCl₂/2H₂O input).

Refinement

All H atoms bound to C were position geometrically and refined as riding, with C—H = 0.93Å and 0.97Å with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms attached to O were located in difference Fourier maps and refined freely with $U_{iso}(H) = 1.5U_{eq}(O)$.

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO* (Rigaku, 1998); data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The binuclear structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 40% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -*x*, -*y*, -*z*+1.Di- μ -adipato- $\kappa^4 O^1$: O^5 -bis{aqua[5,6-diphenyl- 3-(pyridin-2-yl)-1,2,4-triazine- $\kappa^2 N^2$, N^3]copper(II)}

Figure 2

One dimensional chain through hydrogen bond along [0 1 0]. The C—H bonds omitted for clarity.

$Di-\mu$ -adipato- $\kappa^4 O^1$: O^6 -bis{aqua[5,6-diphenyl-3-(pyridin-2-yl)-1,2,4-triazine- $\kappa^2 N^2$, N^3] copper(II)}

Z = 1

F(000) = 554

 $\theta = 3.3 - 27.5^{\circ}$

 $\mu = 0.97 \text{ mm}^{-1}$

T = 295 K

Plate, brown

 $R_{\rm int} = 0.061$

 $h = -12 \rightarrow 11$

 $k = -13 \rightarrow 13$

 $l = -16 \rightarrow 16$

 $0.30 \times 0.19 \times 0.11 \text{ mm}$

11646 measured reflections

5295 independent reflections

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$

3207 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.501 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8025 reflections

Crystal data

$$\begin{split} & [\mathrm{Cu}_2(\mathrm{C}_6\mathrm{H}_8\mathrm{O}_4)_2(\mathrm{C}_{20}\mathrm{H}_{14}\mathrm{N}_4)_2(\mathrm{H}_2\mathrm{O})_2]\\ & M_r = 1072.08\\ & \mathrm{Triclinic}, \ P\overline{1}\\ & \mathrm{Hall\ symbol:\ -P\ 1}\\ & \mathrm{Hall\ symbol:\ -P\ 1}\\ & a = 9.4825\ (19)\ \text{\AA}\\ & b = 10.616\ (2)\ \text{\AA}\\ & c = 13.080\ (3)\ \text{\AA}\\ & \alpha = 78.96\ (3)^{\circ}\\ & \beta = 68.76\ (3)^{\circ}\\ & \gamma = 76.85\ (3)^{\circ}\\ & V = 1186.4\ (5)\ \text{\AA}^3 \end{split}$$

Data collection

Rigaku R-AXIS RAPID CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω -scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.756, T_{\max} = 0.863$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.135$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
5295 reflections	and constrained refinement
333 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0516P)^2 + 0.8435P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.24237 (6)	0.28612 (5)	0.46540 (4)	0.03879 (17)	
N1	0.4452 (4)	0.2512 (3)	0.4938 (3)	0.0374 (8)	
N2	0.3453 (3)	0.4301 (3)	0.3587 (3)	0.0333 (7)	

N3	0.5595 (3)	0.5336 (3)	0.3071 (3)	0.0343 (7)
N4	0.3041 (3)	0.4987 (3)	0.2743 (3)	0.0355 (7)
01	0.0833 (3)	0.3122 (3)	0.3970 (2)	0.0390 (6)
02	0.2814 (3)	0.1907 (3)	0.2883 (3)	0.0488 (7)
03	0.0418 (3)	-0.2164 (3)	0.3245 (3)	0.0570 (8)
O4	-0.1845 (3)	-0.1321 (3)	0.4379 (3)	0.0488 (8)
05	0.0969 (3)	0.4299 (3)	0.5999 (3)	0.0495 (8)
H5A	0.042 (4)	0.375 (3)	0.634 (4)	0.074*
H5B	0.040 (4)	0.501 (2)	0.593 (4)	0.074*
C1	0.4946 (5)	0.1514 (4)	0.5589 (3)	0.0436 (10)
H1A	0.4325	0.0892	0.5955	0.052*
C2	0.6347 (5)	0.1373 (4)	0.5739 (3)	0.0460 (11)
H2A	0.6684	0.0647	0.6170	0.055*
C3	0.7228 (5)	0.2320 (4)	0.5244 (4)	0.0471 (11)
НЗА	0.8152	0.2262	0.5362	0.057*
C4	0.6740 (4)	0.3366 (4)	0.4566 (3)	0.0404 (9)
H4A	0.7322	0.4020	0.4221	0.048*
C5	0.5364(4)	0.3401 (4)	0.4422(3)	0.0333(8)
C6	0.7323(4)	0.7259(4)	0.1838(4)	0.0414(10)
H6A	0.7876	0.6483	0.2068	0.050*
C7	0.7968 (5)	0.8365 (4)	0.1501 (4)	0.020
H7A	0.8964	0.8330	0.1486	0.059*
C8	0.7152 (5)	0.0530	0.1480 0.1183(4)	0.0520(12)
H84	0.7192 (5)	1 0279	0.0050	0.0520 (12)
C9	0.7571	0.9572(4)	0.0757 0.1200 (4)	0.002
Нол	0.5070 (5)	1.0358	0.1200 (4)	0.0497 (11)
C10	0.5117 0.5033 (5)	0.8481(4)	0.0990	0.000
	0.3033 (3)	0.8525	0.1509 (4)	0.0419(10)
C11	0.4040 0.5830 (4)	0.8525 0.7200 (3)	0.1302 0.1840 (3)	0.030°
C12	0.3839(4) 0.2046(4)	0.7290(3)	0.1040(3) 0.1017(4)	0.0331(8)
U12	0.2040 (4)	0.0241(4)	0.1017 (4)	0.0423 (10)
П12А С12	0.1287 0.1724(5)	0.0023	0.1070	0.031°
	0.1724(3)	0.0310 (4)	0.0040 (4)	0.0492 (11)
HI3A C14	0.0761	0.0445	0.0043	0.059^{*}
	0.2816 (5)	0.0872 (4)	-0.0934 (4)	0.0510(11)
HI4A	0.2587	0.7071	-0.1586	0.061*
	0.4258 (5)	0.6942 (4)	-0.0942 (3)	0.0444 (10)
HISA	0.4999	0./191	-0.1601	0.053*
	0.4600 (5)	0.6642 (4)	0.0026 (3)	0.03/9 (9)
HI6A	0.5579	0.6675	0.0011	0.045*
C17	0.3498 (4)	0.6293 (3)	0.1022 (3)	0.0323 (8)
C18	0.4794 (4)	0.4412 (3)	0.3645 (3)	0.0308 (8)
C19	0.5105 (4)	0.6140 (3)	0.2307 (3)	0.0320 (8)
C20	0.3880 (4)	0.5838 (3)	0.2046 (3)	0.0322 (8)
C21	0.1506 (4)	0.2554 (4)	0.3093 (3)	0.0363 (9)
C22	0.0629 (5)	0.2733 (4)	0.2294 (4)	0.0424 (10)
H22A	-0.0456	0.2783	0.2717	0.051*
H22B	0.0762	0.3559	0.1834	0.051*
C23	0.1097 (5)	0.1676 (4)	0.1553 (3)	0.0441 (10)
H23A	0.2148	0.1694	0.1071	0.053*

H23B	0.0456	0 1878	0 1090	0.053*
C24	0.0430	0.1373 0.0304(4)	0.2136 (4)	0.055 (11)
H24A	0.1160	-0.0266	0.1590	0.063*
H24B	0.1818	0.0018	0.2443	0.063*
C25	-0.0463 (5)	0.0133 (4)	0.3027 (4)	0.0595 (13)
H25A	-0.1292	0.0445	0.2724	0.071*
H25B	-0.0616	0.0685	0.3583	0.071*
C26	-0.0602 (5)	-0.1238 (4)	0.3594 (3)	0.0393 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0376 (3)	0.0390 (3)	0.0392 (3)	-0.0141 (2)	-0.0134 (2)	0.0069 (2)
N1	0.0387 (18)	0.0370 (18)	0.034 (2)	-0.0073 (14)	-0.0125 (15)	0.0035 (15)
N2	0.0339 (16)	0.0338 (17)	0.0325 (19)	-0.0103 (13)	-0.0124 (14)	0.0033 (14)
N3	0.0330 (17)	0.0318 (17)	0.036 (2)	-0.0066 (13)	-0.0103 (14)	-0.0015 (14)
N4	0.0364 (17)	0.0380 (18)	0.0308 (19)	-0.0067 (14)	-0.0130 (14)	0.0026 (14)
01	0.0372 (14)	0.0379 (15)	0.0414 (18)	-0.0135 (12)	-0.0097 (13)	-0.0023 (13)
O2	0.0369 (16)	0.0528 (18)	0.058 (2)	-0.0044 (14)	-0.0162 (14)	-0.0125 (15)
03	0.0568 (19)	0.0408 (17)	0.061 (2)	-0.0117 (15)	-0.0073 (16)	0.0011 (16)
O4	0.0459 (17)	0.0403 (16)	0.050 (2)	-0.0119 (13)	-0.0076 (15)	0.0081 (14)
05	0.0481 (18)	0.0387 (16)	0.056 (2)	-0.0060 (13)	-0.0129 (16)	-0.0035 (15)
C1	0.045 (2)	0.041 (2)	0.037 (3)	-0.0053 (18)	-0.0106 (19)	0.0029 (19)
C2	0.045 (2)	0.050 (3)	0.035 (3)	0.007 (2)	-0.016 (2)	-0.001 (2)
C3	0.034 (2)	0.062 (3)	0.044 (3)	0.000 (2)	-0.015 (2)	-0.010 (2)
C4	0.038 (2)	0.041 (2)	0.043 (3)	-0.0060 (18)	-0.0153 (19)	-0.0050 (19)
C5	0.035 (2)	0.034 (2)	0.029 (2)	-0.0043 (16)	-0.0095 (17)	-0.0043 (16)
C6	0.037 (2)	0.036 (2)	0.048 (3)	-0.0079 (17)	-0.0110 (19)	-0.0018 (19)
C7	0.045 (2)	0.046 (2)	0.060 (3)	-0.020 (2)	-0.012 (2)	-0.007 (2)
C8	0.069 (3)	0.037 (2)	0.055 (3)	-0.027 (2)	-0.018 (2)	0.001 (2)
C9	0.068 (3)	0.030 (2)	0.054 (3)	-0.009 (2)	-0.026 (2)	0.001 (2)
C10	0.046 (2)	0.033 (2)	0.050 (3)	-0.0080 (17)	-0.019 (2)	-0.0043 (19)
C11	0.037 (2)	0.0273 (18)	0.035 (2)	-0.0111 (15)	-0.0100 (17)	-0.0014 (16)
C12	0.035 (2)	0.050 (2)	0.037 (2)	-0.0076 (18)	-0.0116 (18)	0.0057 (19)
C13	0.042 (2)	0.058 (3)	0.047 (3)	-0.004 (2)	-0.021 (2)	0.001 (2)
C14	0.064 (3)	0.046 (3)	0.039 (3)	0.002 (2)	-0.023 (2)	0.000 (2)
C15	0.057 (3)	0.036 (2)	0.029 (2)	-0.0072 (19)	-0.002 (2)	-0.0014 (18)
C16	0.040 (2)	0.033 (2)	0.037 (2)	-0.0084 (16)	-0.0085 (18)	-0.0025 (17)
C17	0.041 (2)	0.0256 (18)	0.031 (2)	-0.0087 (15)	-0.0126 (17)	-0.0012 (16)
C18	0.0319 (19)	0.0302 (19)	0.029 (2)	-0.0081 (15)	-0.0077 (16)	-0.0034 (16)
C19	0.0287 (18)	0.0308 (19)	0.032 (2)	-0.0051 (15)	-0.0064 (16)	-0.0005 (16)
C20	0.0288 (18)	0.0264 (18)	0.037 (2)	-0.0041 (15)	-0.0071 (16)	-0.0027 (16)
C21	0.036 (2)	0.031 (2)	0.042 (3)	-0.0163 (17)	-0.0109 (18)	0.0036 (18)
C22	0.046 (2)	0.038 (2)	0.043 (3)	-0.0154 (18)	-0.017 (2)	0.0094 (19)
C23	0.049 (2)	0.052 (3)	0.034 (2)	-0.021 (2)	-0.016 (2)	0.008 (2)
C24	0.064 (3)	0.048 (3)	0.041 (3)	-0.020 (2)	-0.006 (2)	-0.007 (2)
C25	0.059 (3)	0.046 (3)	0.062 (4)	-0.013 (2)	-0.007 (3)	-0.002 (2)
C26	0.046 (2)	0.034 (2)	0.038 (3)	-0.0121 (18)	-0.014 (2)	-0.0003 (18)

Geometric parameters (Å, °)

Cu1—O1	1.961 (3)	С8—С9	1.382 (6)	
Cu1—O4 ⁱ	1.921 (3)	C8—H8A	0.9300	
Cu1—O5	2.375 (3)	C9—C10	1.356 (6)	
Cu1—N1	2.029 (3)	С9—Н9А	0.9300	
Cu1—N2	2.028 (3)	C10—C11	1.401 (5)	
N1-C1	1.336 (5)	C10—H10A	0.9300	
N1—C5	1.341 (5)	C11—C19	1.463 (5)	
N2-C18	1.333 (4)	C12—C13	1.382 (6)	
N2—N4	1.334 (4)	C12—C17	1.394 (5)	
N3—C18	1.321 (5)	C12—H12A	0.9300	
N3—C19	1.332 (4)	C13—C14	1.371 (6)	
N4—C20	1.329 (5)	C13—H13A	0.9300	
O1—C21	1.283 (5)	C14—C15	1.382 (6)	
O2—C21	1.235 (4)	C14—H14A	0.9300	
O3—C26	1.236 (5)	C15—C16	1.380(6)	
O4—C26	1.260 (5)	C15—H15A	0.9300	
O4—Cu1 ⁱ	1.921 (3)	C16—C17	1.390 (5)	
О5—Н5А	0.829 (18)	C16—H16A	0.9300	
О5—Н5В	0.830 (18)	C17—C20	1.477 (5)	
C1—C2	1.383 (5)	C19—C20	1.438 (5)	
C1—H1A	0.9300	C21—C22	1.516 (5)	
C2—C3	1.367 (6)	C22—C23	1.508 (6)	
C2—H2A	0.9300	C22—H22A	0.9700	
C3—C4	1.385 (6)	C22—H22B	0.9700	
С3—НЗА	0.9300	C23—C24	1.516 (6)	
C4—C5	1.376 (5)	C23—H23A	0.9700	
C4—H4A	0.9300	C23—H23B	0.9700	
C5—C18	1.481 (5)	C24—C25	1.470 (6)	
C6—C7	1.372 (6)	C24—H24A	0.9700	
C6—C11	1.399 (5)	C24—H24B	0.9700	
С6—Н6А	0.9300	C25—C26	1.513 (6)	
C7—C8	1.378 (6)	C25—H25A	0.9700	
С7—Н7А	0.9300	C25—H25B	0.9700	
	0.9500		0.9700	
01—Cu1—05	94.47 (11)	C13—C12—H12A	119.7	
01 - Cu1 - N1	164 40 (13)	C17—C12—H12A	119.7	
01 - Cu1 - N2	92 22 (11)	C14-C13-C12	1204 (4)	
04^{i} Cu1 - 01	96.02 (12)	C14— $C13$ — $H13A$	119.8	
04^{i} Cu1 01	94 45 (12)	C12— $C13$ — $H13A$	119.8	
$O4^{i}$ $Cu1$ $N1$	90.71 (12)	C13 - C14 - C15	119.8 (4)	
$O4^{i}$ Cu1 N1 $O4^{i}$ N2	168 98 (12)	C13 $C14$ $H14A$	120.1	
N1 - Cu1 - 05	99.04 (12)	C15— $C14$ — $H14A$	120.1	
N2—Cu1—O5	92.19 (12)	C16-C15-C14	120.1 (4)	
N2— $Cu1$ — $N1$	79 55 (12)	C16-C15-H15A	120.0	
C1-N1-C5	117 8 (3)	C14— $C15$ — $H15A$	120.0	
C1 - N1 - Cu1	126.9 (3)	C_{15} C_{16} C_{17}	120.8 (4)	
$C_5 = N_1 = C_{11}$	115 3 (2)	C15 - C16 - H16A	119.6	
C18 - N2 - N4	117.7 (3)	C17—C16—H16A	119.6	
UIU INA INT	11/1/ (3)		11/.0	

C18—N2—Cu1	115.4 (2)	C16—C17—C12	118.3 (3)
N4—N2—Cu1	126.0 (2)	C16—C17—C20	121.7 (3)
C18—N3—C19	117.8 (3)	C12—C17—C20	119.6 (3)
C20—N4—N2	120.5 (3)	N3—C18—N2	124.6 (3)
C21—O1—Cu1	104.0 (2)	N3—C18—C5	120.5 (3)
C26—O4—Cu1 ⁱ	126.9 (3)	N2—C18—C5	114.9 (3)
Cu1—O5—H5A	90 (4)	N3—C19—C20	118.0 (3)
Cu1—O5—H5B	129 (4)	N3—C19—C11	115.9 (3)
H5A—O5—H5B	108 (3)	C20—C19—C11	126.0 (3)
N1—C1—C2	122.4 (4)	N4—C20—C19	118.7 (3)
N1—C1—H1A	118.8	N4—C20—C17	114.1 (3)
C2—C1—H1A	118.8	C19—C20—C17	127.0 (3)
C3—C2—C1	118.8 (4)	O2—C21—O1	122.7 (4)
C3—C2—H2A	120.6	O2—C21—C22	120.5 (4)
C1—C2—H2A	120.6	O1—C21—C22	116.8 (3)
C2—C3—C4	119.8 (4)	C23—C22—C21	115.3 (3)
С2—С3—НЗА	120.1	C23—C22—H22A	108.5
С4—С3—НЗА	120.1	C21—C22—H22A	108.5
C5—C4—C3	117.6 (4)	C23—C22—H22B	108.5
С5—С4—Н4А	121.2	C21—C22—H22B	108.5
С3—С4—Н4А	121.2	H22A—C22—H22B	107.5
N1-C5-C4	123.4 (3)	C22—C23—C24	115.8 (4)
N1-C5-C18	114.3 (3)	С22—С23—Н23А	108.3
C4—C5—C18	122.2 (4)	С24—С23—Н23А	108.3
C7—C6—C11	120.4 (4)	С22—С23—Н23В	108.3
С7—С6—Н6А	119.8	С24—С23—Н23В	108.3
С11—С6—Н6А	119.8	H23A—C23—H23B	107.4
C6—C7—C8	120.6 (4)	C25—C24—C23	116.0 (4)
С6—С7—Н7А	119.7	C25—C24—H24A	108.3
C8—C7—H7A	119.7	C23—C24—H24A	108.3
C7—C8—C9	119.3 (4)	C25—C24—H24B	108.3
С7—С8—Н8А	120.3	C23—C24—H24B	108.3
С9—С8—Н8А	120.3	H24A—C24—H24B	107.4
С10—С9—С8	120.9 (4)	C24—C25—C26	116.6 (4)
С10—С9—Н9А	119.6	C24—C25—H25A	108.2
С8—С9—Н9А	119.6	С26—С25—Н25А	108.2
C9—C10—C11	120.7 (4)	C24—C25—H25B	108.2
C9—C10—H10A	119.6	C26—C25—H25B	108.2
C11—C10—H10A	119.6	H25A—C25—H25B	107.3
C6—C11—C10	118.1 (3)	O3—C26—O4	125.7 (4)
C6—C11—C19	119.8 (3)	O3—C26—C25	120.3 (4)
C10—C11—C19	121.6 (3)	O4—C26—C25	113.9 (4)
C13—C12—C17	120.5 (4)		

Symmetry code: (i) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O5—H5A···O3 ⁱ	0.83	1.92	2.721 (3)	161

			supplementary materials		
O5—H5 <i>B</i> ····O1 ⁱⁱ	0.83	2.06	2.878 (4)	167	
Symmetry codes: (i) $-x$, $-y$, $-z+1$; (ii) $-x$, $-y+1$, $-z$	z+1.				